
(A 0 is initial amplitude). Whence it follows that low-frequency and high-frequency losses 
lead to different rules for the change in wave amplitude. For the example given, an estimate 
of coefficients in Eq. (12) indicates that ~ ~ 10-12(A/a) and 14 ~H6/3~ 2"10-1~(A/a). Conse- 
quently, with strains A ~l(u,x~10 -s) high-frequency losses are negligibly small, and there- 
fore it is possible to ignore the second term in the denominator of (13), and as a result 
of this the soliton amplitude will also decrease by an exponential rule but with another 
decrement. 

The authors thank A. I. Vesnitskii for considering the work. 
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ANALYSIS OF THE POWDER COMPACTION PROCESS IN A CYLINDRICAL CONTAINER 

ON THE BASIS OF A SIMPLE MODEL 

A. I. Matytsin UDC 539.374 

Explosive compaction of powders is often accomplished in cylindrical geometry when the 
applied load is quite large and, as a result of this loading, may affect the strength proper- 
ties of materials. A similar point of view was expressed in [i], and this is also indicated 
by experimental results [2-4]. During shock loading the final powder density, shock wave 
(SW) amplitude, and the strength properties of the compacted material appear to be connected 
with each other in a complex fashion. However, since the main change in powder volume occurs 
in the shock-wave front (SWF), as a first approximation the change in density behind the 
front is ignored, and it is assumed to be constant. In addition, there is one more severe 
simplification, i.e., the dynamic yield strength is assumed to be constant. With detonation 
rates much greater than the SW velocity in the powder, the slope of it to the container axis 
is small, and for analysis it is possible to use a unidimensional model. 

In a unidimensional arrangement the problem of loading a compacting cylinder without 
a shell was resolved in [5]; the case was studied numerically for constant load and dynamic 
yield strength depending linearly on internal energy of the material, and also the asymptotic 
behavior was found for SW amplitude at the start and end of the process of its convergence. 
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In [6, 7] calculation was carried out for powder compaction by powerful explosive in 
a cylindrical container filled with a two-dimensional non-steady-state model. An equation 
for the state of the powder was worked out according to a model in [8]. Results were given 
for calculation in specific experimental arrangements of normal stresses in the SWF for dif- 
ferent thicknesses of explosive layer and also the field of velocities with loading of pow- 
ders with different dynamic yield strengths. 

In practical applications a knowledge is normally required of the main parameters govern- 
ing the powder compaction process in cylindrical containers and the degree of their effect 
on this process. In this connection, in experimental works there exist different points of 
view, and correspondingly different approaches, to determining the optimum compaction regime. 
In [4] governing parameters are assumed to be the ratio of explosive mass to that of the pow- 
der and the square of the detonation velocity, in [2] they are assumed to be density, shell 
strength, shell thickness, and explosive layer thickness, in [9] they are assumed to be the 
ratio of the explosive mass to that of the container with the powder, and in [3] the energy 
which is transferred to the powder by the container, accelerated detonation products, and 
it depends on geometric dimensions of the shell and its hardness, and also on the ratio of 
explosive mass to that of the shell; none of them are universal [9]. 

To a considerable extent an approach applied in [5] is used in the present work. On 
the basis of a simple model, the problem is resolved for powder compaction in a cylindrical 
container for which it is possible to obtain an idea about the effect of different initial 
parameters on SW behavior in the powder. 

i. We consider loading by external pressure p of material (powder) with initial den- 
sity P0 in an incompressible cylindrical shell with density Pc with constant dynamic yield 
strength o c and radii a 0 (inner) and b 0 (outer). The stressed state is assumed to be plane- 
strained. Ahead of the SWF the material does not exhibit strength, with any SW amplitude 
behind the SWF in the powder, a condition is attained with density pp and dynamic yield 
strength Op having a constant value. 

Equations of motion and incompressibility in cylindrical coordinates in the case of 
axial symmetry are 

Or or) 0~ % -- ~r ( 1 . 1 )  
P - ~ - I - v ~ r  Or r 

o (vr) = O. ( 1 . 2 )  
Or 

Here o r and o~ are stress tensor components in a cylindrical coordinate system; p and t are 
density and time; v and r are mass velocity and distance to the container axis (Euler vari- 
ables). Mises flow conditions are used o r -- 6~ = 6i (c i is minimum yield strength of the 
container material or powder). It follows from (1.2) that 

vr---- /(t) -~ a a ' =  bb' = ~,xx', (1.3) 

where ~ = i - P0/Pp is powder porosity; a----(a~ - hb~ + Xx2) I/2, b = (52o - ~b20 + hxa) I/2 are 
current outer and inner shell radii; x = x(t) is SW radius in the powder; a prime indicates 

differentiation with respect to time. 

By using (1.3), from (i.I) we obtain 

p( / ' / r  - -  12/r s) = OarlOr - -  ~ / r ;  ( 1 . 4 )  

I' = Xxx" + X ( z ' p .  (1.5) 
We i n t e g r a t e  ( 1 . 4 )  w i t h  r e s p e c t  t o  r once  f r o m  a t o  x ,  and a s e c o n d  t i m e  f rom r ( x  ~ r <- 

b) to x, and we use (1.5), boundary conditions Or(X) = -p0X(x') 2 and ~r(a) = -p(t), and con- 
tinuity condition c r with r = b. As a result of this 

x" = Po~ (x')~ (t - -R --K) -4-3-- p ( 1 . 6 )  
Po%XR 

r r Pp)~ (x')Z / x 2 ) 
- -  ~r (r, t) = po E (x') ~ - -  pp~ [xx" + (x') 2] In ~ + ap In --x q- - - 2  i - -  ~ ,, 

R=P---Clnb +-P-Plnb '  K = - 2 - [ ~ o ~ Z - - ~ ) +  Po ~ , ~ - - ~ )  'J 
Po 9o x 

S = o c l n ~ - + o p l n  . 
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In this model work A provided by external pressure is consumed in communicating kine- 

tic energy E c to the substance, in the increase in internal energy of the substance as a 
result of plastic deformation at the front E~, and behind the SWF E=. For these values per 

unit length of container, we have 

(1.7) A ( x ) = -  2n ~ p a d a  = - - 2 ~ p ~  ~ p x d x ,  
a O b 0 

pv  2 

Ec(x)  = - -  2~ -~- rdr  = ~p0)~2x~ (x ')  2 Tt, E 1 (x) ~ - -  ~l)o~ 2 (x ' )  ~ x d x .  

a b 0 

I n  o r d e r  t o  o b t a i n  r e l a t i o n s h i p  ( 1 . 7 ) ,  we u s e  ( 1 . 3 )  a n d  an  e x p r e s s i o n  f o r  t h e  i n c r e a s e  
i n  i n t e r n a l  e n e r g y  i n  t h e  SWF p e r  u n i t  m a s s  AE 1 = X2(x  ' ) 2 / 2 .  The  w o r k  o f  p l a s t i c  d e f o r m a -  
t i o n  o f  t h e  s u b s t a n c e  b e h i n d  t h e  SWF i s  w r i t t e n  i n  t h e  f o r m  

E~(x)=--uoc a 2]ng-ao2"mS- a~ --uo'p[b~lng--2,x21ng . (1.8) 

In any instant of time A = E c + E I + g2; the correctness of this equality may be checked by 
differentiating it with respect to time using (1.6)-(1.8). 

In (1.6)-(1.8) we transfer to dimensionless variables by the equations 

r = bor* , p~ = PoP~, ~i = Po(~, P = POP*, ( 1 . 9 )  

a o = boao, x = box*, t = xt*, E ~ - -  CE~,  A = CA*,  

= " ~ * ,  :~' = ( l ~ l O ( x ' ) * ,  x "  = ( b o ! ' P ) ( x " ) * .  

H e r e  ~ = b 0 ( P 0 ~ / P 0 ) Z / 2 ;  C = ~Xpob02; P0 = p ( 0 ) ;  $ i s  c h a r a c t e r i s t i c  t i m e  f o r  e x i s t e n c e  o f  
p r e s s u r e  p ;  d i m e n s i o n l e s s  v a r i a b l e s  a r e  l a b e l e d  w i t h  an  a s t e r i s k .  B e l o w  i n  n u m e r i c a l  c a l -  
c u l a t i o n s ,  P0 = PEXD2/( k + l )  i s  C h a p m a n - J o u g u e t  p r e s s u r e ,  PEX a n d  D a r e  d e n s i t y  o f  t h e  e x -  
p l o s i v e  a n d  d e t o n a t i o n  v e l o c i t y ,  k i s  an  i n d e x  o f  p o l y t r o p y  f o r  t h e  d e t o n a t i o n  p r o d u c t s .  As 
a r e s u l t  o f  s u b s t i t u t i o n  f o r  d i m e n s i o n l e s s  v a r i a b l e s ,  we o b t a i n  

" (x')~(I--R--K)-FS--P" (1.10) 
X = xR ' 

- -  a ~  = ( x ' )  ~ - -  (,,p [ x x  " + (x') ~] In -7 + 2 p" z '  

= - -  2 t" p x d x ,  E c  = x ~ ( x ' )  2 R,; E~ - -  - -  j" x ( x ' )  2 dx ,  A ( 1 .  12)  
1 1 

E~ = [~c ( b~ In b - -  a 2 l u a  + ao ~ lna0)  + ~p (~x ~ in x - -  b 2 In b)]/;~, 

R ( x ) = P c l n - g + P P  l n - ~ 0 ' x  S ( x ) = e c l n - ~ + e p l n  ~ 0 ,  

1 t 

= - k + b - - -  - ) ,  + = - 

with t < 0, p = 0;with t ~ 0,p = p(t) ~ 0, p(0) = i. 

Initial conditions are x(0) = I, x'(0) = 0, end p(t) is a monotonic fucntion falling nor- 
mally with time. In (1.10)-(1.12) and subsequently in equations all of the values are dimen- 
sionless, and for simplification their asterisks are omitted. Reverse transfer to dimension- 
less variables may be carried out by Eq. (1.9) with previously restored asterisks for r, x, 

x', x", t, p, A, Ei, Pi, ~, ~ a0. 

By solving Eq. (i. I0) it is possible to obtain relationship x(t), and by replacing it 
in (i.ii) to find or(r, t). It can be seen from (I.I0) that in the initial stage of compac- 
tion x" < 0, since it is assumed that with small t, p ~ 1 < S, in other words, the shell does 
not deform. The SWF moves with acceleration towards the container axis, and there is acceler- 
ation of the container wall by external pressure created normally by detonation products. 
While the SW has passed a short distance from the inner wall of the container and the mass 
of compacted powder is small compared with the mass of the shell, for x z 1 with an accuracy 
to first-order terms for g = 1 - x << i, we have 
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~ c +  ~(i -- ~ c )  (1.13) 

In deriving (1.13) use was made of the condition of container wall thickness smallness 6 c = 
a0 - i << i. For quite small t, when p z i and (x') 2 is small, we obtain, by ignoring terms 
with (x') 2 and e, 

x' ~c--~ ~--~c6ct 2 ~--:-w-r-t,e ~ (1.14) 
�89 2~8c �9 

In this stage SW movement depends, apart from the applied pressure, mainly on shell mass and 
to a lesser extent on its strength properties, since in practice od6 c << i. Subsequently 
as pressure drops and s increases, the strength properties and porosity of the contents of 
the container start to play a role. In the general case SW behavior depends on applied pres- 
sure and five dimensionless parameters: Pc, Pp, Oc, Op, and a 0̀  

The asymptotic behavior of the solution of Eq. (i.i0) as x + 0 is found by means of 
substituting y = (x') 2, and p is considered as a function of x. Thus the equation is reduced 
to a first-order equation 

dy --dx +My = N ~ M = - - 2  i -  mRR K, N = 2 S-7-ff--.- p ( 1 . 1 5 )  

The solution of (1.15) is expressed in quadratures 

y=g(x)exp(- -J 'M(z)dz  g ( x ) =  exp M(n)dn N(z)dz. ( 1 . 1 6 )  
1 

As x + 0, y + ~ l i k e  x - 2 ( l n  x)  h - 2 ,  on c o n d i t i o n  t h a t  g ( x ) >  go > 0. I f  w i t h  x + 0, g ( x )  + 
0 i s  n o t  s l o w e r  t h a n  x 2 ( l n  x)  2-~ ,  t h e n  y (SW a m p l i t u d e )  r e m a i n s  a f i n i t e  v a l u e  a l t h o u g h  i t  
may a l s o  i n c r e a s e  t o w a r d s  t h e  c o n t a i n e r  a x i s .  S o l u t i o n  w i t h  g ( x )  < 0 c o r r e s p o n d s  t o  t h e  c a s e  
when t h e  SW f a d e s  t o  z e r o  w i t h o u t  r e a c h i n g  t h e  c o n t a i n e r  a x i s .  Thus ,  a s y m p t o t i c  b e h a v i o r  
y = ( x ' ) :  w i t h  an u n l i m i t e d  i n c r e a s e  in  SW does  n o t  depend on c o n t a i n e r  p a r a m e t e r s ,  and i t  
a p p e a r s  t o  b e : t h e  same as w i t h  a b s e n c e  o f  a s h e l l .  From a s y m p t o t i c s  ( x ' )  2 and e x p r e s s i o n  
(1.12) for E c, it follows that E c ~ 0 with x § 0. 

2. In order to model container loading by an explosive substance in numerical calcula- 
tions ~ is prescribed so that pressure pulse I (integral of pressure with respect to time) 
has the same value as in the case when p(t) is created by glancing detonation of an explosive 
layer. In calculations three different rules were used for the pressurewith respect to time, 
i.e., exponential, linear, and power: p = exp (--t/~), p = I -- t/2~, p = (I -- n2t~/16~2)I/2 

For all three relationships I = ~ has one and the same value. The detonation pressure 
pulse, as also in [10], is determined from the relationship for rotation angle $ of a plate 
thrown with glancing detonation and having a mass identical with that of the shell. An ex- 
pression is used describing experimental results with an accuracy of 20%: 

~=r%-~ k n-cT_ ~, (2.1) 

where  s i s  r a t i o  o f  e x p l o s i v e  mass to  t h a t  o f  t h e  p l a t e ;  k = 2 .5  f o r  ammonite and k = 2 .8  
f o r  hexogen  [ 1 1 ] .  With s m a l l  ~ ( s i n  ~ : ~ ) ,  t h e  p u l s e  r e c e i v e d  by t h e  p l a t e  i s  p r o p o r t i o n a l  
t o  a n g l e  6, d e t o n a t i o n  v e l o c i t y ,  and mass o f  t h e  p l a t e .  By e q u a t i n g  I t o  t h e  p u l s e  o f  t h e  
p l a t e  pe r  u n i t  a r e a ,  we o b t a i n  (6 c << 1) an e x p r e s s i o n  

~~ct V 3 (2.2) 

Here Eq. (2.1) occurring for the planar case is used. With throwing of a cylindrical shell 
by an outer explosive layer,, the values of the rotation angle appear less by 20-30% [12], 
which may be considered as corresponding to a reduction in $. In deriving (2.2) it was 
assumed that presence of powder does not markedly affect velocity acquired by the shell 
during acceleration. The effect is absent at a time when the mass of the powder compacted 
at instant of time t = ~ appears to be much less than the mass of the shell (Pc6c << e(5)). 
If these values are comparable, then shell acceleration will occur more slowly, as though 
its mass increased. For Pcdc >> s(~), expression (2.2) is inapplicable. 

Numerical solution of Eq. (i.i0) was carried out by the fourth-order Runge-Kutta method, 
with values of parameters typical for practical applications. Results of numerical calcula- 
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tions are presented in Figs. 1-3 on dimensionless coordinates V-x, where V = x'[PEX/%(k + 
1] I/2 is the ratio of SW .velocity to detonation velocity. Curve 1 in these diagrams was 

calculated with a 0 = 1.33, ~ = 0.666, Pc = 9.0, Po = 3.0, Oc = 0.203, Op = 0.00813, g = 
0.776, PEX = i.i0, and an exponential relationshi~ was used for p(t). This may correspond 
to the following values of physical quantities: container with inner and outer radii of 20 
and 15 mm, a density of 9 g/cm 3, dynamic yield strength of 0.5 GPa, powder with initial and 
final densities of 1.0 and 3.0 g/cm ~, dynamic yield strength 0.02 GPa, layer of explosive 
(12 mm) with a density of i.I g/cm 3 with a detonation velocity of 2.8 km/sec, k = 2.5. 
Curves 2 and 3 in Fig. 1 were calculated for linear and power relationships of p(t) with the 
same values of parameters. The solution appeared to depend weakly on the nature of pressure 
drop, and therefore further calculations were only carried out for the exponential relation- 
ship. 

Each variant corresponded to a change in a potentially lower number of physical values 
used in calculating curve I. Curve 4 in Fig. 1 relates to a change in explosive thickness 
to 18 mm and a detonation velocity up to 4.0 km/sec (with changing parameters o c = 0.0996, 
o = 0 00398, g = 1.32), 5 to the original (12 mm) layer of explosive with k = 2.8 and de- p 
tonation velocity 4.2 km/sec (o c = 0.0978, Op = 0.00391, g = 0.708). 

Presented in Fig. 2 are the results of calculations with variation of container para- 
meters. Line 2 corresponds to an increase in outer radius to 25mm(a 0 = 1.67, ~ = 0.807), 3 
to a reduction in container inner and outer radii to 15 and i0 mm (a 0 = 1.50, ~ = 1.23), 
4 to a reduction in container density to 3 g/cm s (Pc = 3.0, $ = 0.571), 5 and 6 to a change 
in dynamic container strength to 0 and 1.0 GPa (o c = 0 and 0.406). 

Given in Fig. 3 are calculated results obtained with varying material parameters. Curves 
2-4 relate to an increase in dynamic yield strength to 1.0 GPa (Op = 0.406), initial density 
by a factor of two as a result of prior compaction (% = 0.333, Pc = 4.50, pp = 1.50), final 
density of the material to 4 g/cm 3 (% = 0.750, pp = 4.0), and 5 to another material with ini- 
tial and final densities of 3 and 9 g/cm 3 with the same degree of prior compaction (Pc = 
3.0). These calculations give an ideaabout the effect of change in different physical para- 
meters of the experiment on SW behavior in the powder. 
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Numerical calculations showed the following. In many practically important cases, shell 
acceleration ceases when the SW has passed a distance corresponding to 5-15% of the container 
inner radius. The effect of powder strength properties on SW velocity is relatively weak. 
Curve 2 in Fig. 3, with attenuation of the SW to zero, was obtained with a dynamic yield 
strength (i.0 GPa) which can really hardly be achieved with an SW amplitude less than 0.2 
GPa obtained from the calculation. 

In a quite broad range of change in physical parameters, there exist solutions in which 
SW velocity changes weakly up to x ~ 0.i. Subsequently there is a sharp reinforcement or 
weakening of the SW. Solutions with x' ~ const in the region i > x I ~ x ~ x 2 > 0, are pos- 
sible when velocity changes in it are small, i.e., IAx'l << [x'l. This condition with Ax 
0.5 is fulfilled when Ix"I ~ 2(x') 2 = 2y is valid. Whence, taking account of (i.i0) we find 

that in this region SW velocity changes little if 2y>>Iy(I--R--K)+S--p xR . When p is small 
i 

in this region, then this inequality, due to the weak dependence on x of functions S, R, and 
K, easily provides a selection of parameters of the problem. 

In order that x' z const in region 1 > x I z x z 0 taking account of the limitedness of 
p, fulfillment of an additional condition is necessary: y(l - R - K) + S - p + 0 with x § 0. 
If a strictly constant SW velocity is required in the region 1 > x I e x e 0, i.e., x" = 0, 
then it is necessary that simultaneously in this region: y(l - R - K) + S - p = 0 and y = 

Op/Pc. 

As can be seen from Figs. 1-3 it is often the case that IVI < 0.5 for x~ 0.i. In the 
two-dimensional case with container loading by glancing detonation of explosive SW, slopes 
to the container axis of ~ < 30 ~ correspond to these values of radial velocity. Withlsuch 

the axial component of mass velocity for the specimen is small, and therefore in order to 
analyze the powder compaction process, it is possible to use a unidimensional model. If an 
unlimited increase in SW amplitude occurs, then starting with certain x = x,, IVI > i, 
SW velocity exceeds detonation velocity. Furthermore, simultaneous solution is known to be 
inapplicable for describing the actual compaction process. In the two-dimensional case, this 
behavior should relate to a smooth or sharp change in SWF slope to 90 ~ , i.e., development 
of a "Mach disk." It is natural to assume that x, corresponds to "Mach disk" radius. The 
SW then has the shape of a cone with a rounded tip or a truncated cone. This is the so- 
called "strong" regime, i.e., one of three loading regimes observed by experiment [13]. With 
a "weak" regime the SW attenuates to zero without arriving at the container axis. The inter- 
mediate regime is when the shock-wave surface is a right cone with a sharp tip, and x' = const 
up to the axis according to the model used would be difficult to accomplish in an experiment 
due to the limitations indicated above. Therefore, the intermediate region recorded in [13] 
is either not described within the framework of the given approach, or it may correspond 
to the case when the SW arrives with an approximately constant velocity almost up to the con- 
tainer axis, and then it accelerates (attenuates) sharply in a distance which is very small 

for reliable experimental recording. 

A series of radial stress profiles in the powder -Or(r, t) for different instants of 
time were calculated by Eq. (i.ii) (Fig. 4, where series 1 relates to curve 1 in Figs. 1-3, 

3 to curve 6 in Fig. 2). 

We consider evolution of a radial stress profile within the container. The tangent to 

the slope of the curve -Or(r, t) is 

o% ~ PP gz~" + -?--.p U xx " - -  0 - 7 = - - U  + r 3 r '  = + y =  [ y ( I - K ) + S - p ] / R "  (2 3) 

I t  can  be s e e n  f rom ( 2 . 3 )  t h a t  w h i l e  p i s  l a r g e  and y i s  s m a l l ,  U r O, and t h e n  - 8 O r / S r  > 0 
for all x ~ r ~ b. Subsequently, when as a result of a reduction in p the U becomes quite 
large, on the curve -Or(r, t) a maximum developes (Fig. 4). As a study of the sign of the 
second derivative shows, a minimum does not occur with any r and t. With further SW propa- 
gation the maximum may disappear. In the case of an unlimited increase in SW amplitude with 
x + 0, as follows from asymptotic y, in the SWF -8or/Sr > 0, anda maximum always occurs as 

with absence of a shell [5]. 

For stresses at the boundary of the powder and Container with r = b from (i.ii), we have 
~ __b ~J!(l--x~) +opln@, For instants of time when in(b/x) z 1 -or(b, - -  ( b ,  t )  = - -  

t )  z -OpXX" + y ( 1  - p p / 2 )  + Op. Whence i t  can  be s e e n  t h a t  i n  p a r t i c u l a r  w i t h  q u i t e  s m a l l  
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Op and large pp and with x" _> 0, -or(b, t) may be negative (Fig. 4), i.e., tensile stresses 
arise. The cohdition x" -> 0 may be realized with quite large dynamic container strength. 
Development of tensile stresses in practice may lead to occurrence of gaps between the powder 
and the container if the bond of the powder with the container appears to be insufficiently 
strong. 

3. In order to obtain a qualitative idea about SW behavior in typical situations we 
carry out some estimates for a simple rule of p(t). 

Let p(t) = 1 differ from zero for 0 <- t <_ ~, g is quite small, so that g($) << 1 and 
S(~) z Oc6 c + apg(g)/pp << i, i.e., time for the action of pressure is small and strength 
properties of the material up to t = $ are unimportant. The work of the forces of external 
pressure A = 2e(t) (t~ g). From (1.12) for small E, it is possible to find that E 2 = 2Oc6ce + 
apg2/pp << A. Over the time of pressure operation, there is shell acceleration and an in- 
crease in SW amlpitude y from zero to y(~). 

We consider the case of E(g) << Pc~c, and we use approximate solution (1.14), whence we 
find that y(g) ~ 2s(g)/pc6 c << i, e($) z g2/2Pc6 c. By using expression (i.12) for El, we find 
that at instant of time t = ~ in plastic deformation in the SWF there will be energy expended 
El(g) z [e(~)]2/PcSc, i.e., a small part of A($) = 2s($). The work of plastic deformation 
behind the SWF (for the same time) E2(~) is also much less than A($). Therefore, at instant 
of time t = g almost all of the work of the forces of external pressure appears to be stored 
in the form of kinetic energy of the shell, which in this model subsequently will be expanded 
in heating the powder and shell as a result of plastic deformation. 

If an unlimited reinforcement of the SW does not occur, then total energy released in 
the SWF with convergence of the SW towards the container axis is 

0 

Elp ~ - -  J y (~) xdx A ($) . ( 3 . 1 )  
t 

with PcSc 91 it consists of not more than half A($). If inequality A(~) > A(~)/2Pc6 c + E2p , 
occurs, where E2p is total energy consumed in deformation behind the SWF, then this means 
that SW amplitude should increase without limitation. (A limited increase in SW amplitude 
is possible according to (1.16) only with certain conditions on function g.) With Pc6c << I, 
inequality (3.1) means that after action of the external pressure ceases the SW amplitude 
should decrease rapidly with passage of the SW over distance JSx[~ Pc6c . 

In the second case, when Pc6c << ~($), from (1.13) we obtain another approximate equa- 
tion x" ~ [(x') 2 - l]/[pc6 c + s(l - Pc6c)], whence 

( ~ e + ~ ) 2 '  Y ( b ~ l ,  ~ 8 c  I - -  I +  , 

and from (1.12) it follows that EI(~)~ e(~)~ A(~)/2, i.e., in time ~ for plastic deformation 
i~ the SWF, it is possible to consume up to half of the total energy, and therefore after ac- 
tion of external pressure ceases, the characteristic distance in which the SW amplitude will 
decrease is [Sx[ ~s(~). 

Thus, for short-term application of loads we obtain the following. With a shell of 
small mass (Pc6c << i), the SW amplitude decreases rapidly with distance. The distance in 
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which the SW amplitude decreases to zero depends on o c and UP" With o c = Op = 0 there is 
always an unlimited reinforcement of the SW close to the axls [14]. 

For a massive shell (Pc~c~l) it is possible to accomplish a loading regime when the 
SW passes with approximately constant amplitude almost up to the container axis. The shell 
then reduces the maximum SW amplitude, and it promotes more uniform specimen compaction. View- 
ing the container as an explosive energy accumulator, which then consumes it in the work of 
plastic deformation, was formulated on the basis of experimental data in [2, 3, 12]. It is 
easy to see that in the model given this corresponds to the case of a massive container. 

Similar energy estimates may also be carried out when a rigid rod is placed along the axis 
of a container with powder. Here after attaining the SW the rod may retain excess kinetic 
energy, and further calculation should be carried out taking account of the elastic proper- 
ties of the materials. However, it is clear that in real specimens excess kinetic energy 
is converted to a significant degree into elastic deformation energy. This should lead to 
development of tensile stresses in the container and its contents during unloading, which 
will be greater, the greater the elastic deformation energy. 

Thus, by means of a simple model, analysis has been carried out for the process of ex- 
plosive powder compaction in a cylindrical container. It is governed mainly by the pulse 
of external pressure and five dimensionless parameters characterizing the powder and con- 
tainer. In the general case it is possible to separate three stages of SW convergence toward~ 
the container axis corresponding to three regions of the powder: outer, intermediate, and cen- 
tral. In the initial stage there is a rapid increase in SW parameters in the powder. The 
following-stage is characterized by approximately constant SW velocity, and this may occur 
with a quite massive container. Here development of tensile stresses is possiblewithin 
a container with powder. In the last stage, depending on values of dimensionless parameters, 
it is possible for there to be rapid attenuation or reinforcement of the SW leading to devel- 
opment of features close to the axis. Its reinforcement may be caused by convergence of the 
SW in cylindrical geometry and not connected with occurrence of an irregular reflection. 
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